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Abstract

Foodborne bacterial infections are a major global health concern, causing millions of  illnesses and deaths annually. Advances in 
microbial genomics have improved pathogen characterization, yet the relationship between genomic traits and public health out-
comes remains unclear. This study investigates 50 foodborne bacterial species by analyzing genome size, GC content, virulence 
gene count, and antimicrobial resistance (AMR) gene presence in relation to global infection rates and mortality. Our findings 
reveal substantial genomic diversity, with genome sizes ranging from 1.2 Mb to 9.0 Mb and virulence gene counts from 2 to 312. 
Genome size, gene number, and GC content are strongly correlated, but neither virulence nor AMR gene counts consistently predict 
mortality or global case numbers. These weak associations suggest that host susceptibility, ecological adaptation, and gene expres-
sion contribute significantly to pathogenicity. This study also highlights the value of  microbial forensics in foodborne outbreak 
investigations. Integrating whole-genome sequencing (WGS), comparative genomics, and phylogenetic analysis allows for tracing 
pathogen origins during contamination events. Bacteria such as Salmonella enterica, Escherichia coli, and Listeria monocytogenes 
frequently feature in forensic cases due to their high public health impact. The use of  machine learning (ML) and Artificial Intel-
ligence (AI) enhanced genomic surveillance holds promise for improving pathogen source attribution and biosecurity. These re-
sults highlight the complexity of  bacterial virulence and call for integrated approaches combining genomic, epidemiological, and 
forensic data. Future work should emphasize functional genomics, host-pathogen interactions, and predictive modeling to enhance 
foodborne disease prevention and outbreak response strategies.
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1. Introduction

Foodborne bacterial infections are a major global health concern, caus-
ing millions of  illnesses and deaths annually. According to the World Health 
Organization (WHO), foodborne diseases affect 600 million people each year, 
leading to approximately 420,000 deaths, with the highest burden observed in 
low- and middle-income countries (WHO, 2025). These infections are com-
monly associated with contaminated food, water, improper hygiene practices, 
within children under five years old, immunocompromised individuals, and the 
elderly being the most vulnerable (Kirk et al., 2015). The economic impact is 
also severe, with billions of  dollars lost annually due to healthcare costs, loss 
of  productivity, and food recalls (Scallan et al., 2011). Despite decades of  re-
search, foodborne bacterial infections remain a persistent challenge due to the 
emergence of  antimicrobial resistance (AMR), environmental adaptability, and 
complex pathogen-host interactions (Rocourt et al., 2003).

The field of  microbial genomics has revolutionized our understanding of  
bacterial pathogens, providing valuable insights into the genetic basis of  viru-
lence, antimicrobial resistance, and epidemiological trends (Didelot et al., 2017). 
The advent of  whole-genome sequencing (WGS) and comparative genomics 
has enabled researchers to characterize the genetic diversity of  bacterial spe-
cies, facilitating the identification of  key virulence determinants, mobile genetic 
elements, and resistance mechanisms (Oniciuc et al., 2018; Saini et al., 2024). 
However, despite these advances, the relationship between genomic features 
and disease severity remains poorly understood. While some pathogens exhibit 
large, complex genomes with numerous virulence factors, others have stream-
lined genomes yet cause severe disease, suggesting that genomic complexity 
alone may not fully explain pathogenic potential (Merhej and Raoult, 2011).

Several studies have explored genome size, GC content, and gene composi-
tion as potential indicators of  bacterial adaptability, virulence, and resistance 
capacity (Ochman and Davalos, 2006; Bobay and Ochman, 2017). Genome 
size has been linked to metabolic versatility and environmental adaptability, 
with larger genomes often associated with higher numbers of  virulence and 
resistance genes (Toft and Andersson, 2010). However, this trend does not hold 
universally, as some highly virulent pathogens, such as Clostridium botulinum 
and Helicobacter pylori, have relatively small genomes, yet produce potent tox-
ins or have evolved mechanisms to evade host immunity (Rossetto et al., 2014). 
Conversely, opportunistic pathogens like Pseudomonas aeruginosa and Burk-
holderia species have large genomes, allowing for adaptation to diverse environ-
ments but not necessarily higher virulence (Stover et al., 2000).

Another important genomic feature is GC content, which varies widely 
among bacteria and may influence DNA stability, mutation rates, and gene reg-
ulation (Hildebrand et al., 2010). Some studies suggest that higher GC content 
correlates with greater environmental persistence, as observed in soil-dwelling 
and free-living bacteria, whereas host-associated pathogens often exhibit lower 
GC content, possibly due to genome reduction and specialization (Moran, 
2002). However, the direct impact of  GC content on bacterial virulence and 
epidemiological success remains debated (Bentley and Parkhill, 2004).

In addition to genome size and GC content, virulence gene content and 
antimicrobial resistance (AMR) gene presence are critical factors influencing 
pathogenic potential. Bacteria encode a wide array of  virulence factors, includ-
ing toxins, adhesins, secretion systems, and immune evasion proteins, which 
collectively determine their ability to infect, survive, and proliferate within hosts 
(Ribet and Cossart, 2015). Similarly, AMR genes allow bacteria to withstand 
antibiotic treatment, complicating infection management and increasing mor-
tality risks (Martínez et al., 2009). The global rise of  antibiotic-resistant food-
borne pathogens, such as multidrug-resistant Salmonella and extended-spec-
trum beta-lactamase (ESBL)-producing Escherichia coli, has been a growing 
concern in clinical and food safety settings (Djordjevic et al., 2024). However, 
while AMR genes contribute to treatment efficacy, their direct relationship with 
mortality rates is not well established, as some highly resistant bacteria cause 
mild infections, whereas others with few resistance genes can be highly lethal 
(Baker et al., 2018).

Given these uncertainties, this study aims to systematically analyze the ge-
nomic features of  50 foodborne bacterial species and assess their correlation 
with public health metrics, including mortality rate and annual global infection 
cases. By evaluating genome size, GC content, virulence gene count, and AMR 
gene presence, we seek to determine whether genomic complexity influences 
pathogenic severity. Understanding these relationships could improve risk as-

sessment, surveillance, and intervention strategies for foodborne diseases. The 
findings from this study may also contribute to genome-based predictive mod-
els, helping identify high-risk pathogens and guiding public health policies on 
food safety and infectious disease control.

2. Materials and Methods

2.1. Data Collection and Selection Criteria

The genomic and epidemiological data for this study were obtained from 
well-established public databases. Bacterial genome sequences were retrieved 
from NCBI and RefSeq databases (O’Leary et al., 2016; Sayers et al., 2024). 
In parallel, epidemiological data, including global infection cases and mortal-
ity rates, were collected from the Global Burden of  Disease (GBD) study and 
World Health Organization (WHO) reports. These sources were chosen for 
their comprehensive surveillance of  foodborne diseases across different geo-
graphical regions and population groups. 

To ensure the reliability of  our dataset, bacterial species were included only 
if  they had well-documented genomic data and available epidemiological sta-
tistics related to human infections. Species with incomplete genome sequences, 
low-quality assemblies, or insufficient epidemiological records were excluded 
from the study.

2.2. Genomic Feature Analysis

To explore the genetic diversity of  foodborne bacteria, several key genomic 
features were extracted from assembled genome sequences. Genome size (Mb), 
gene number, and GC content (%) were directly obtained from RefSeq annota-
tions. These fundamental metrics provide insights into bacterial genome orga-
nization, metabolic potential, and evolutionary adaptation. 

To assess virulence potential, the number of  virulence genes in each bacte-
rial species was identified using the Virulence Factor Database (VFDB) (Chen 
et al., 2016). This database contains curated information on known bacterial 
virulence determinants, including toxins, adhesion proteins, and immune eva-
sion mechanisms. The presence of  antimicrobial resistance (AMR) genes was 
determined using ResFinder and the Comprehensive Antibiotic Resistance 
Database (CARD) (Alcock et al., 2020). These databases enable the detection 
of  genetic determinants associated with antibiotic resistance, including genes 
encoding beta-lactamases, efflux pumps, and ribosomal modifications.

To ensure data accuracy, we applied quality control filters during data 
extraction. Only complete or high-quality draft genomes were included, and 
duplicate entries and plasmid-only assemblies were excluded. Virulence and 
AMR genes were identified using standardized thresholds of  >90% nucleotide 
identity and >80% coverage to minimize false positives and ensure consistency 
across species. The wide ranges observed in virulence and AMR gene counts 
reflect true biological variation among species and are not due to redundancy or 
assembly artifacts. Cases with zero gene counts were verified as true negatives, 
typically occurring in species with reduced genomes (e.g., Mycoplasma spp.), 
rather than data omissions.

2.3. Statistical Data Analysis

Descriptive statistics were calculated to summarize the genomic and epi-
demiological characteristics of  the dataset. For each genomic feature, mean, 
standard deviation, quartiles, and range were computed to assess the overall 
distribution and variability among bacterial species. All data analyses have been 
conducted using Jupyter Notebook (Kluyver et al., 2016) with Python (van Ros-
sum and Drake, 2009) and its libraries: NumPy (Harris et al., 2020) for numeri-
cal operations, Pandas (McKinney, 2010) for data handling, Matplotlib (Hunter, 
2007) for plotting, and Seaborn (Waskom, 2021) for enhanced visualization.

To evaluate potential relationships between genomic traits and public health 
impact, Pearson and Spearman correlation coefficients were used. Pearson cor-
relation was applied to assess linear relationships between continuous variables, 
while Spearman correlation was used to capture potential non-linear associa-
tions. These analyses aimed to determine whether genome size, gene number, 
GC content, virulence gene count, or AMR gene presence were predictive of  
mortality rate and global infection cases.

To facilitate interpretation, multiple data visualization techniques were 
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employed. Histograms and boxplots were generated to illustrate distribution 
patterns and outliers in genomic features, while heatmaps were used to depict 
correlation matrices. Additionally, scatterplots were created to examine potential 
associations between genomic complexity and pathogenic severity. These visual 
representations provided an intuitive means of  identifying trends, clusters, and 
potential outliers within the dataset.

3. Results

3.1. Genomic Diversity Among Foodborne Bacteria

The comprehensive dataset summarizing the species, family, genome size 
(Mb), gene number, GC content (%), virulence gene count, antimicrobial resis-
tance (AMR) gene count, annual global infection cases, and reported mortality 

rates (%) for 50 foodborne bacterial species analyzed in this study are shown 
in Table 1. The summary statistics of  the 50 foodborne bacteria (Table 2) re-
veal substantial variability in genome size, gene number, GC content, virulence 
factors, AMR genes, and their associated public health impact. The average 
genome size is 3.97 Mb, with a wide range (1.2–9.0 Mb), mirroring the diversity 
in gene number (0–18,000, mean 3,847). GC content varies from 27% to 68% 
(mean 44.28%), indicating different evolutionary adaptations. The number of  
virulence genes also shows high dispersion (2–312, mean 47.4), as does AMR 
gene count (0–7,000, mean 152.4), suggesting that some pathogens possess ex-
tensive resistance mechanisms while others have none (Table 1). The distribu-
tion of  annual global cases (1–2.8 billion, median 141,000) and mortality rates 
(0.1–93%) highlights the uneven burden of  these bacteria, with a few species 
causing massive outbreaks (Table 1). The high standard deviations across most 
variables emphasize the heterogeneity in genome characteristics and public 
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Table 1. . Genomic, Virulence, Antimicrobial Resistance, and Epidemiological Profiles of  50 Foodborne Bacterial Species.  Comprehensive dataset summa-
rizing the species, family, genome size (Mb), gene number, GC content (%), virulence gene count, antimicrobial resistance (AMR) gene count, annual global 
infection cases, and reported mortality rates (%) for 50 foodborne bacterial species analyzed in this study. This detailed table supports comparative analyses of  
genomic features and their potential associations with public health impact and microbial forensic investigations.

Mortality 
Rate (%)

Annual Cases 
Worldwide

AMR 
Genes

Vir Genes 
Number

GC Cont. 
(%)

Gene 
Number

Genome 
Size (Mb)

FamilySpecies

17800000010505246004.6EnterobacteriaceaeSalmonella enterica
30230000005303830003ListeriaceaeListeria monocytogenes
5200000010405047005EnterobacteriaceaeEscherichia coli
0.1800000005355145004.8EnterobacteriaceaeShigella_sonnei
7010003202836003.9ClostridiaceaeClostridium botulinum
417900007605755005.5EnterobacteriaceaeKlebsiella pneumoniae
91,500,000393937004.1MorganellaceaeProteus mirabilis
305,600,000104554,0005.6EnterobacteriaceaeEnterobacter cloacae
304,0001021585,0005EnterobacteriaceaeSerratia marcescens
10290,000712525,0005EnterobacteriaceaeCitrobacter freundii
34117,0001057474,0004.6YersiniaceaeYersinia enterocolitica
590,000867482604.6YersiniaceaeYersinia pseudotuberculosis
8.610,000916573,7003.8HafniaceaeEdwardsiella tarda
2173,0001930513,5004MorganellaceaeMorganella morganii
181,000,000620675,0007PseudomonadaceaePseudomonas aeruginosa
917,000678,1009BurkholderiaceaeBurkholderia cepacia
10165,000100146686,5007.4BurkholderiaceaeBurkholderia pseudomallei
1018,0001300383,0004.8LegionellaceaeLegionella pneumophila
1540,00083126018,0005.5AeromonadaceaeAeromonas hydrophila
502,000,0004010473,9004VibrionaceaeVibrio cholerae
18200,0005300534,4005.2VibrionaceaeVibrio parahaemolyticus
331,0007160464,0007.5VibrionaceaeVibrio_vulnificus
11,500,00030158301,7001.8CampylobacteraceaeCampylobacter jejuni
11,500,0001211312,0001.8CampylobacteraceaeCampylobacter coli
41,200,000426391,2001.7HelicobacteraceaeHelicobacter pylori
160,0001311446,8006.4BacillaceaeBacillus cereus
20100,000102375,0005.3BacillaceaeBacillus anthracis
93101008396,0005.5BacillaceaeBacillus thuringiensis
61,500,00062294,0004.3ClostridiaceaeClostridium difficile
301,000,000720302,5003.3ClostridiaceaeClostridium perfringens
101,000,0003100282,7002.8ClostridiaceaeClostridium tetani
501,00013273,4003.4ClostridiaceaeClostridium septicum
101,600,000209332,0002.8StaphylococcaceaeStaphylococcus aureus
401,000863322,5002.5StaphylococcaceaeStaphylococcus epidermidis
11,500,00053332,5002.5StaphylococcaceaeStaphylococcus saprophyticus
2010014382,8002.9ListeriaceaeListeria_ivanovii
1018,000,000646391,5001.9StreptococcaceaeStreptococcus pyogenes
828,000713352,0002StreptococcaceaeStreptococcus agalactiae
5500536392,5002StreptococcaceaeStreptococcus pneumoniae
52,800,000,00049362,0002StreptococcaceaeStreptococcus mutans
7240,00065408,0002StreptococcaceaeStreptococcus suis
10100,0001010373,0003.6EnterococcaceaeEnterococcus faecalis
1350,0001073803.2EnterococcaceaeEnterococcus faecium
509,0001015654,0004.4MycobacteriaceaeMycobacterium tuberculosis
25200,00037684,0005MycobacteriaceaeMycobacterium avium
520526321,8001.8FrancisellaceaeFrancisella tularensis
110008574,2003.3BrucellaceaeBrucella abortus
2500,000410573,0003.3BrucellaceaeBrucella melitensis
11,00002422,0001.9CoxiellaceaeCoxiella burnetii
525005301,3001.2RickettsiaceaeRickettsia rickettsii

Mortality 
Rate (%)

Annual Cases 
World

AMR 
Genes

Virulence 
Genes

GC Content 
(%)

Gene 
Number

Genome 
Size (Mb)

50.0050.0050.0048.0050.0050.0050.00Count
17.8360499803.32152.4047.4044.283847.203.97Mean
19.40395649413.95988.3677.3012.062679.741.73Std
0.101.000.002.0027.000.001.20Min
5.005250.005.007.7535.252500.002.5825%
10.00141000.007.0014.0039.503650.003.9550%
28.751500000.0010.0047.0052.754575.005.0075%
93.002800000000.007000.00312.0068.0018000.009.00Max

Table 2.  Summary statistics of  genome size, gene number, GC content, virulence genes, AMR genes, annual cases worldwide, and 
mortality rates among 50 foodborne bacteria. 
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health risks associated with these pathogens.
The genomic features of  the 50 foodborne bacterial species exhibit sub-

stantial variability, as seen in the distribution plots and boxplots. Genome size 
ranges from 1.2 Mb to 9.0 Mb (mean: 3.97 Mb), with most bacteria clustering 
around 2–5 Mb (Figure 1). The gene count follows a similar trend, varying from 
0 to 18,000 genes (mean: 3,847), with a few species having exceptionally large 
genomes and gene content (Figure 2). GC content shows a wide distribution 
(27%–68%) (Figure 3), indicating diverse evolutionary strategies across species. 
Boxplots reveal that some species exhibit outliers in genome size, gene number, 
and GC content (Figure 4), suggesting the influence of  horizontal gene transfer, 
environmental adaptation, or pathogenic specialization.

A barplot ranking bacterial species by genome size (Figure 5) highlights 
Burkholderia cepacia, Vibrio vulnificus, and Burkholderia pseudomallei as the 
species with the largest genomes (>7 Mb). In contrast, Rickettsia rickettsii, Heli-
cobacter pylori, and Campylobacter jejuni have the smallest genomes (<2 Mb), 
suggesting a more specialized or host-dependent lifestyle.
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3.2. Virulence and Antimicrobial Resistance (AMR) Gene Distribu-
tions

The number of  virulence genes varies widely across species, ranging from 
2 to 312 (mean: 47.4) (Figure 6). Most bacteria harbor relatively few virulence 
genes, but a few species possess over 100, suggesting enhanced pathogenic po-
tential. The boxplot (Figure 7) confirms this trend, with several outliers exhibit-
ing exceptionally high virulence gene counts.

Similarly, AMR gene distribution is highly skewed, with most bacteria con-
taining few resistance genes (mean: 152.4), while a select few harbor thousands 
of  AMR genes (Figure 8). The presence of  extreme outliers in the boxplot (Fig-
ure 9) suggests that some species have undergone extensive resistance acquisi-
tion, likely due to antibiotic pressure or horizontal gene transfer.

3.3. Correlation Between Genomic Features and Public Health Im-
pact

A heatmap (Figure 10) shows strong positive correlations between genome 
size, gene number (0.55), and GC content (0.67), indicating that larger genomes 
tend to have higher GC content and more genes. Virulence gene count exhibits 
moderate correlations with genome size (0.32) and gene number (0.42), sug-
gesting that more complex genomes may contain more virulence factors. AMR 
gene count, annual cases, and mortality rates show weak or no correlation with 
genomic traits, implying that pathogenicity and public health burden are influ-
enced by additional ecological or host factors.

3.4. Scatterplot Analysis of  Mortality Rate vs. Genomic Traits

Scatterplots comparing mortality rates with genomic features (Figure 11) 
indicate that genome size, gene number, and GC content do not strongly corre-
late with mortality, suggesting that larger genomes or higher gene counts do not 
predict increased lethality. Virulence gene count shows a slight upward trend, 
with some species possessing >100 virulence genes exhibiting higher mortality; 
however, the overall pattern remains dispersed, indicating the influence of  ad-
ditional factors.

Similarly, AMR gene counts and annual global case numbers do not show 
clear relationships with mortality, as bacteria with high resistance gene counts or 
widespread prevalence often exhibit low mortality rates. These patterns empha-
size the complexity of  bacterial pathogenicity and the role of  host, ecological, 
and environmental factors beyond genomic content.

3.5. Pairwise Comparisons of  Genomic and Epidemiological Fea-
tures

A comprehensive pairplot (Figure 12) visualizes relationships among nu-
merical features across species. Genome size, gene number, and GC content 
exhibit strong correlations, consistent with observations in the correlation heat-
map, reflecting genome structural relationships across foodborne bacteria. In 
contrast, relationships between genomic features and public health metrics 

Figure 1. Distribution of  genome size among 50 foodborne bacteria species.

Figure 2. Distribution of  gene number among 50 foodborne bacteria species.

Figure 3. Distribution of  GC content among 50 foodborne bacteria species.

Figure 4. Boxplots of  genome size, gene number, and GC content among 50 food-
borne bacteria species.
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Figure 5. Ranked barplot of  genome size by species among 50 foodborne bacteria species.
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Figure 6. Distribution of  virulence gene count among 50 foodborne bacteria species.

Figure 7. Boxplot of  virulence gene count among 50 foodborne bacteria species.

Figure 8. Distribution of  AMR gene count among 50 foodborne bacteria species.

Figure 9. Boxplot of  AMR gene count among 50 foodborne bacteria species.
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Figure 10. Correlation heatmap of  genomic features among 50 foodborne bacteria species.

Figure 11. Scatterplots of  mortality rate vs. genomic traits among 50 foodborne bacteria species.
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Figure 12. Pairplot of  all numerical features among 50 foodborne bacteria species.



(mortality rates, annual cases) remain weak or absent, highlighting that genome 
characteristics alone are insufficient to predict disease severity or burden.
Virulence and AMR gene counts display skewed distributions, with a few spe-
cies harboring high counts while most remain low, without clear clustering pat-
terns based on pathogenic severity. These findings underscore the multifactorial 
nature of  foodborne bacterial pathogenicity and the necessity of  integrating 
genomic, epidemiological, and ecological data to improve risk assessment, sur-
veillance, and disease prevention strategies.

4. Discussion

This study provides a comprehensive analysis of  the genomic diversity, viru-
lence potential, and antimicrobial resistance (AMR) profiles of  50 foodborne 
bacterial species, linking these features to their public health impact. Our find-
ings reveal substantial variability in genome size, gene content, virulence fac-
tors, and resistance genes, but weak correlations between genomic traits and 
epidemiological severity. These results highlight the multifactorial nature of  
bacterial pathogenicity, emphasizing the need for integrated genomic, clinical, 
ecological, and host-related assessments to better predict and mitigate food-
borne disease risks (Pightling et al., 2021; Hendriksen et al., 2019).

4.1. Genomic Complexity and its Relationship to Pathogenic Poten-
tial

Our results confirm that genome size is strongly correlated with gene num-
ber (r = 0.55) and GC content (r = 0.67), consistent with previous findings 
that larger bacterial genomes often encode more genes, allowing for greater 
metabolic versatility and adaptability (Ochman and Davalos, 2006). However, 
genome size alone does not dictate pathogenicity, as some highly virulent bacte-
ria, such as Helicobacter pylori and Campylobacter jejuni, have small genomes 
(<2 Mb), while others with larger genomes, such as Burkholderia species, are 
opportunistic rather than obligate pathogens. This suggests that pathogenicity is 
more reliant on specific virulence factors than on genome size alone.
Furthermore, virulence gene count exhibits only moderate correlations with 
genome size (r = 0.32) and gene number (r = 0.42), reinforcing that pathogenic 
potential is not solely determined by genomic expansion. Some pathogens with 
relatively low gene counts, such as Clostridium botulinum, produce highly po-
tent toxins, making them lethal despite their small genomes (Rossetto et al., 
2014). Conversely, some species with large genomes, such as Bacillus cereus, 
are not always highly virulent, highlighting the role of  regulatory mechanisms, 
environmental conditions, and host interactions in determining disease severity 
(Ehling-Schulz et al., 2019).

4.2. Antimicrobial Resistance and Public Health Risk

The distribution of  AMR genes across bacterial species is highly skewed, 
with some species possessing thousands of  resistance genes, while others have 
none. This variability aligns with prior studies showing that horizontal gene 
transfer (HGT) plays a crucial role in the acquisition of  resistance determinants, 
particularly in species frequently exposed to antibiotic pressure (Frost et al., 
2005; von Wintersdorff et al., 2016). Global surveillance efforts using metage-
nomics and WGS have highlighted the spread of  AMR determinants across 
environmental and clinical settings, underscoring the need for integrated moni-
toring frameworks (Hendriksen et al., 2019; Collignon and McEwen, 2019).

Despite the presence of  high AMR gene counts in some bacteria, no strong 
correlation was found between AMR genes and mortality rate, suggesting that 
antibiotic resistance alone does not directly predict disease severity. While re-
sistance may contribute to treatment failure and prolonged infections, it does 
not necessarily increase intrinsic virulence (Martinez et al., 2009). Additionally, 
some highly resistant bacteria, such as Enterococcus faecium, typically cause 
chronic but non-lethal infections, whereas low-resistance pathogens like Listeria 
monocytogenes can be fatal, particularly in immunocompromised individuals 
(Radoshevich and Cossart, 2018).

4.3. Weak Correlations Between Genomic Features and Mortality 
Rate

A key finding of  this study is the lack of  strong correlations between genome 

size, gene number, GC content, virulence genes, and mortality rate. Scatterplots 
show that some highly lethal bacteria have relatively simple genomes, while 
others with large genomes and numerous virulence factors cause only mild in-
fections. This reinforces the idea that mortality rate is shaped by a complex 
interplay of  factors, including host susceptibility, transmission dynamics, and 
immune evasion strategies (Casadevall and Pirofski, 2018).

For instance, pathogens such as Vibrio vulnificus and Yersinia pseudotu-
berculosis exhibit high fatality rates despite moderate genome sizes, whereas 
Escherichia coli and Salmonella enterica, which have relatively large genomes, 
cause a spectrum of  diseases ranging from mild gastroenteritis to severe sys-
temic infections (Jolley and Maiden, 2010; Baker et al., 2018). This suggests that 
key virulence determinants, such as toxin production, immune evasion mecha-
nisms, and host-pathogen interactions, may be better predictors of  disease se-
verity than genome size alone (Pightling et al., 2021).

4.5. Evolutionary and Ecological Influences on Pathogenicity

The pairwise comparison of  genomic and epidemiological features indi-
cates that certain bacterial species cluster together based on genome size and 
GC content, but not necessarily on virulence or resistance patterns. This aligns 
with previous research showing that bacterial genome evolution is driven by 
niche adaptation, environmental pressures, and host interactions rather than a 
simple accumulation of  virulence factors (Merhej and Raoult, 2011).

For example, intracellular pathogens like Rickettsia and Mycobacterium 
exhibit genome reduction, reflecting their reliance on host cellular machinery, 
while environmentally persistent bacteria like Pseudomonas aeruginosa main-
tain large, flexible genomes to survive diverse conditions (Toft and Andersson, 
2010). Machine learning and AI approaches are increasingly being used to 
analyze these complex genomic and ecological patterns, enhancing our under-
standing of  pathogen evolution and spread (Jiang et al., 2022; Danko et al., 
2021; Libbrecht and Noble, 2015). This suggests that pathogen success is dic-
tated by ecological fitness rather than genome complexity alone, underscoring 
the need for contextual analysis of  bacterial pathogenicity.

4.6. Implications for Food Safety and Disease Prevention

These findings have important implications for foodborne disease surveil-
lance and risk assessment. Given the weak correlations between genomic traits 
and public health burden, a multifactorial approach incorporating genomic, 
epidemiological, and host-pathogen interaction data is essential for improving 
predictive models of  foodborne disease risk (Scallan et al., 2011; Collignon and 
McEwen, 2019).

Genomic screening alone may not be sufficient to assess virulence risk; func-
tional studies on toxin production, immune evasion, and transmission dynam-
ics are critical. AMR monitoring should focus on clinically relevant resistance 
genes and their impact on treatment outcomes rather than total gene counts. 
Surveillance strategies should prioritize high-risk species with both high viru-
lence and frequent foodborne transmission, such as Listeria monocytogenes, 
Vibrio vulnificus, and Salmonella enterica.

Future research should explore machine learning approaches to integrate 
genomic, epidemiological, and clinical data for more accurate pathogenicity 
risk assessments (Jiang et al., 2022; Libbrecht and Noble, 2015). Additionally, 
functional genomics studies could help determine which virulence and resis-
tance factors are most predictive of  severe disease outcomes.

4.7. Foodborne Bacteria and Their Role in Microbial Forensics

The genomic analysis of  foodborne bacteria not only enhances our un-
derstanding of  pathogenicity and public health risks but also plays a crucial 
role in microbial forensics—a field dedicated to identifying and tracking micro-
bial agents in criminal, bioterrorism, and foodborne outbreak investigations. 
By leveraging whole-genome sequencing (WGS), phylogenetic analysis, and 
comparative genomics, microbial forensics can trace the origin, evolution, and 
transmission routes of  foodborne pathogens, providing critical evidence in cases 
of  food contamination, bioterrorism, and intentional adulteration (Thirunavuk-
karasu et al., 2018).

Today, advancements in microbial forensics enable real-time genomic sur-
veillance, allowing authorities to rapidly identify specific bacterial strains, their 
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virulence factors, and antimicrobial resistance genes, aiding in forensic investi-
gations and outbreak control (Oliveira et al., 2024; Pightling et al., 2021). The 
integration of  ML and AI models with WGS data can enhance source attribu-
tion, evolutionary tracking, and prediction of  outbreak dynamics in microbial 
forensics (Jiang et al., 2022; Danko et al., 2021).

The bacterial species analyzed in this study, including Salmonella enteri-
ca, Escherichia coli, Listeria monocytogenes, and Vibrio cholerae, are among 
the most common culprits in foodborne outbreaks and forensic investigations 
(Todd, 2017; Baliyan et al., 2025). As global food supply chains become in-
creasingly complex, the combination of  pathogen genomics and forensic tools 
will be essential for ensuring food safety, tracing sources of  contamination, and 
mitigating biosecurity threats.

4.8. Limitations and Future Directions

While this study provides valuable insights into the genomic and epidemio-
logical diversity of  foodborne bacteria, several limitations remain. Key factors 
such as host susceptibility, infection dose, and environmental conditions were 
not included, yet they play crucial roles in disease severity and transmission. 
Future research should incorporate functional genomics approaches to analyze 
how gene expression influences virulence and antimicrobial resistance, rather 
than relying solely on gene presence. Additionally, ML techniques could signifi-
cantly improve predictive modeling by identifying genomic signatures linked to 
high-risk pathogens, enabling more precise risk assessment and targeted public 
health interventions.
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