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Abstract 
 
Given two regular functions (images)  f and g on R2  where g is formed from f  by a general 
linear transformation, g(x) = f (Ax + b). We present a procedure to  determine the 
transformation ‘parameters’ A  and b using Radon projections of f and only two projections 
of g. We use these projections together with simple facts on matrix vector multiplication to 
recover the matrix A.  The assumptions we have here are: f is nonnegative and A is 
nonsingular. Commonly used transformations in image processing such as rotation, scaling 
and others are special cases of our approach.  
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Introduction 
 

       The question of image matching is one of the basic image processing concepts due to its 
many applications in detecting changes in a scene, estimating object motion, studying an inspected 
image, integrating information from different types of image, etc.  
 
        In this paper we present a method for recovering 2D affine transformations or a general 
linear transformation that relates an input distorted image to a known reference image. To some 
degree, this work is a generalization of the work we presented in [1], where we considered the 
class of images under possible distortion of rotation, scaling, reflection and translation.  
 
        These common geometrical transformations of images have been the target for many 
authors; for instance [1- 4].  On the other hand, there is a growing body of studies on the more 
general cases of affine transformations, general linear transformations, or bilinear 
transformations. One finds different algorithms that are based on different implementations such 
as methods of moments, correlations, integral transformations, and others.   For examples, [5]  
deals with the 2D affine transformation using a regular grid of points extracted from the 
distorted image and then compares it with a reference grid. The method of moments is often used, 
such as Zernike Moments [6], and Krawtchouk moments [7]; the trace transform method is used in 
[8]. These are just  samples of the important work on this problem.  This mathematical problem 
gains some of its importance due the connection with the engineering watermarking practice. 
However, according to [9], in signal processing there are no efficient algorithms known for the 
class of affine transformations. 
 

           Our method is based on using the relation between Radon transform of the images  f  

and g  together with the fact that a matrix A  maps the standard unit vector  i =  
0

1
    to the first 

column of A  and the standard unit vector and  j  =  
1

0
   to the second column of A  .  We then 

use these tools to build possible solutions (matrices). Each candidate (matrix) is tested by a direct 
matching in the transform domain or in the function domain. 
         In the remaining part of this introduction we introduce notation and basic formulas.  

Suppose that f  is a 2-D function and 
2

R )( x 
x

y . We will assume that the centroid of 

f coincides with the origin. Given the unit vector  

   ξ T)   ,  ( θθ sincos                                                         (1) 

The Radon Transform of f along the line }    : )( { psinycosxy,xL θθ   is given by: 

dtcostsinpsintcospf,pf θθθθ θ  )          ,     -     (  )(               (2)   

We will be using the notation )( θ,pf  and ) ( ξ,pf  interchangeably.  Let A  be a 22  

nonsingular matrix. Define the function  
)x ( (x) Afg                                                                   (3)                                                                                                       

Then,       )
||

  (     )(
ζ

ζ

ζζ
 ξ ,

||

p
f

||

|)Bdet(|
,pg                (4) 
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as shown in [10 ],  where 
1AB and  ζ ξTB  ,which is not in general a unit vector.  Figure 1 

shows an image illustration of a function f and the function g obtained by a linear 

transformation. 
 

      
                            a       b 
Figure1.a, b: A linear transformation of a text image. 

I. THE FORM  )x ( (x) Afg      

         

Our goal is to recover the matrix 
TBC : from (4).  We begin with rewriting (4) in the  

scalar form: Let    θ and   φ be the two angles that define the vectors   ξ and ζ . i.e 
T , (  θ)θξ sincos , and  

        . )  ,  (     Tφφζξζ sincos.||C                             

(5) 
We will be using these notations and relations throughout the discussion. Now, we write (4) in the 
form 

)  (  
)(

   )(  φ
ζζ

θ ,
||

p
f

||

|Cdet|
,pg                      (6)                                      

From (6) it is possible then to show that                                        

                     

  

 )(  

    
-

dp),p(f

dp,pg

|Cdet|

p

p

θ

φ

-          (7)

 

with any choice of   θ and φ  .  

 

           The difficulty in using (4) or (6) with C being unknown is that we need to know which angle 

  θ would correspond to which angle   φ.  In trying to address this issue we develop some analytical 

formulas and arguments that will eventually be implemented numerically.  Also, our approach 
offers the option of using only two projections of the inspected image    g , namely 

angles
2

    and  0,   
π

θθ , as will be explained shortly.   Notice that if we square both sides of (6) 

we can obtain the useful relation: 
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dp,pg

dp,pf

|Cdet|||

p

p
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φ)

ζ
2

-

2
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          (8) 

In addition, for a choice of θ  and φ  that match through (6) it would obviously be true that  

 0 φ
ζζ

θ 2||)  (  
)(

   )( ,
||

p
f

||

|Cdet|
,pg||                      (9) 

where 2||.||   is the 2-norm of a function.  In some special cases it is possible to use merely (7) and 

(8) to recover the matrix of transformation. For a quick example: If the matrix A  represents a non 

uniform scaling. i.e.   
   b     0

0      a
   A where a  and b  are non zero nonnegative real numbers, 

thenC would also be a diagonal matrix of the form   
      

    
   

β0

0α
C for some 0.     and  βα  We 

apply (7) and (8) with T, (  )00ξ sincos , from which we have  0     0,   φθ , Cξζ    , and  

   

  (][

 (][  

 . ) (  
-

dp,pg

dp,pf

|Cdet|||||

p

p

0)

0)

ζα
2

-

2

2

     (10) 

 and .
|Cdet|

α
β

)(
      Figure (2) is an illustration of such a transformation using 

  
   1.5000           0

0           0 .900
   A that can be recovered precisely using (10). 

 
 

                   
                                Figure 2a          Figure 2b 
Figure 2 a,b:  Nonuniform scaling that can be recovered using (10) 
 
          

     Back to the concern of matching an angle θ  to an angleφ .  Each angle    θ  is associated 

(matched) with at least one unknown pair of an angle φ   and a real number || ζ   so that (6), (7), 
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(8), and (9) are all satisfied.  The values we need for the angle θ  are 0  and
2

 
π

 that define the 

standard unit vectors  i =  
0

1
   and j =  

1

0
  .  It is known that a matrix C  maps the vector i to the 

first column of C  and j to the second column of .C  If *

1 φ  and *

2 φ  are the two angles that match 

with the angles 
2

    and  0   
π

θθ  through (6), then we may express the two columns of C  in the 

forms:  

         . )  ,  (      T*

11

*

11 φφζ
0

1
ζ sincos.||C  

      .)  ,  (     T*

2

*

222 φφζ
1

0
ζ sincos.||C  

 
 
Motivated by (9); we define the functions: 

    ||)  (  
)(

   )(  ( 2 φ
ζζ

0φ)0 ,
||

p
f

||

|Cdet|
,pg||F

         (11) 

  ||)  (  
)(

   )(  2 φ
ζζ2

π
φ

2

π ,
||

p
f

||

|Cdet|
,pg||)(F

     (12) 

πφπ    - ; and || ζ  as in (8) with 
2

  , 0   
π

θ  respectively.  

Clearly, 0φ )(  *

10F  = )(  *

2

2

φπF .  Notice that there is possibility for (a false match) i.e.  It is 

possible to find more than one zero of  ,0F
2

πF  or both. But our minimization process will be 

counting for these possibilities as we explain now. Define the matrix function M  of two columns 

 :  and 21 ζζ  

 ]  |  [  ),( 2121 ζζφφMM                                                                                                    

(13)  

  ),( 21 φφ  ]  ,- [ ππ ]  - [ ππ, , where  

,sincos.|| T

1 )  ,  (    111 φφζζ       || 1ζ as in (8) with 
1φφ , 0   θ . 

 ,)  ,  (    T

2 222 φφζζ sincos.||    || 2ζ  as in (8) with 
2φφ  ,

2
     
π

θ . 

Using (13) we now can define a reasonable class of matrices for a possible solution of the 
problem.  

     In view of the above discussion we define our objective function on  ]  ,- [ ππ ]  - [ ππ, : 

θφ
ζζ

θ |   )φ(φ 

π

0θ

211 ddp,
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p
f
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where    and   φθ are the two angles that define the vectors  
Tsin , cos (  θ)θξ ,

Tsin , cos (   φ)φζξζ ||M  and M  from (13).  Clearly, 

 0     )( 1 21 φφ , and   0    )φ(φ 
*

2

*

11 , . 

We also can test possible matrices in the function domain by working with the objective function: 

||    )φ(φ 212 , )x ( (x) Mfg 2
||                                    (15) 

where g from (3) and M  from (13). 

We will numerically find   ),( 21 φφ  ]  ,- [ ππ ]  - [ ππ,  that minimizes 
1 or

2 . More on the 

numerical implementation is presented in the discussion section.  
 

The Form b) x ( (x) Afg  
 

      Consider the function 
b) x ( (x) Afg                                                             (16)                                                              

.2
R b Let  )  (

x

y  
be the centroid of image g : 

 

0

0

-

-

 )( 

 )  (  

 

dp,pg

dp,pgp

x ;  

2

π

2

π

-

-

 )( 

 )  (  

 

dp,pg

dp,pgp

y                                  

(17) 

as derived in [1].  Given our assumption that the centroid of f   is the origin, a direct calculation 

of this center of mass shows that        

       )( -  b
x

y
A                                                                                       

(18)                                       
Define a new function, an image, whose centroid is the origin:   

)y,x(g1  )yy,xx(g :  b  )(   
xx

yyAf . Using (18) we write, 

)x ( (x) Afg1
                                                                                      

(19)  
    Thus, we need to work with (19) to obtain the matrix as already presented in the previous 
section. 
 

Discussion & Remarks 
          

We want to select the matrix  
TBC   from a reasonable class of matrices M that is defined in 

(13). We then test M  in the transform domain as in (14) or in the function domain as in (15). We 
conducted several tests on different types of images. For example, in figure 3a, b we use the 

matrix   
   4     3

2      1
   A to make the transformation. Here,   

.5-      1  

1.5     2-
   C with  

*

1φ  = 2.6779 and *

2φ  = -0.3218.  In figure 3c, d, we show the graphs of and ,0F
2

πF on [ π π,  - ]. 

The two minimizers of and ,0F
2

πF  are *

1  φ  and *

2 φ . 



46 Published By Atlas Publishing, LP (www.atlas-publishing.org)  

 

 

                           
         Figure3a                                      Figure 3b 

                  
          Figure 3c              Figure 3d 

Figure 3a, b: a block image and a linear transformation with   
   4     3

2      1
   A  

Figure3c, d:

 

 ) ( 10 φF

 

from (11) and )( 2

2

π φF  from (12) for the above transformation. 

 
In devising this minimization process we make the following remarks: 

First: We notice that if we work with (14), the values of the objective function 
1 would be well 

separated compared to the values of
2 . Second:  in minimizing 

1 or
2 we use the constraints 

that for every   ),( 21 φφ  ]  ,- [ ππ ]  - [ ππ, , M is nonsingular, and both  and  ) ( 10 φF )( 2

2

π φF  in 

(11) and (12) must be substantially small as suggested by figures 3c, d. 
 Third: for testing our equations in a numerical setting we used the class of block images 
developed in [1], as the F block in figure 3. We also extend this approach to any M x N image. 
Indeed, we employ the known idea of representing an image as the sum of shifted boxes that we 
describe briefly: Let 

otherwise.     

1y0 and 1x0 if     
 

0

1
:)y,x(b               (20) 

be the unit square function whose Radon transform  ) ( φ,pb is known exactly [10].  Let f  be an 

M x N image, we work with the pixel and spatial coordinate systems simultaneously to write: 
M

1i

)(  )
N

j

iMy,jxby,xf
1

1( .  )j,if (                      (21) 

Applying the translation rule of Radon transform we obtain: 
M

1i

 (}.  , ] (   1)cos-(j [  {  )
N

j

)j,ifsin)iMpb,pf
1

φφφφ(        (22) 
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which is a way of computing the Radon transform of an image at any angle of projection. 
Forth: our method can be adjusted to handle some special cases of transformations. For example, 
the case of nonuniform scaling that we derived in (10). Another typical example is recovering a 

matrix of rotation: if   A is merely a rotation matrix then matrix C  is orthogonal  which means 

that  
2

 
π

φφ *

2

*

1 in which case we can think of 
1 and

2  as functions in one variable 

on  ]  ,- [ ππ . 

 

Conclusion 
 
         In this paper, we presented a method for identifying a linear transformation applied on an 

image. We compared the two functions f  and g where g  is obtained by subjecting f  to a 

linear transformation: b) x ( (x) Afg . We used   the relation between the Radon transforms of 

f  and g to approximate the two columns of the matrix 
TBC where

1AB .  We also used 

the Radon transform in computing the center of mass of the inspected image that leads to compute 
the translation parameters. 
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